If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2+40X-319=0
a = 1; b = 40; c = -319;
Δ = b2-4ac
Δ = 402-4·1·(-319)
Δ = 2876
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2876}=\sqrt{4*719}=\sqrt{4}*\sqrt{719}=2\sqrt{719}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(40)-2\sqrt{719}}{2*1}=\frac{-40-2\sqrt{719}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(40)+2\sqrt{719}}{2*1}=\frac{-40+2\sqrt{719}}{2} $
| 2^x/3=256 | | 7x-65=5 | | 6x-17=-11 | | 7x-13*7=5 | | 4(2x-28)-3(3x-7)+9(12-2)=0 | | -3x-2+6=2x+6-3 | | -3(x-2)+6=2(x+3)-3 | | 4(x-3)+0.6=2(x+18)-1.2 | | 7x-1+80+6x-37x=180 | | 4(3x+1x)+7-5x=8(-5)(5x-6x)+23 | | 9f=918 | | w/28=17 | | 5h=100 | | 5^(2x+3)=4 | | 78=2z | | y^2+28y+60=0 | | 8+5^(2x+3)=12 | | 130+10x=18x | | x+(x+5)+1/3x=0 | | y/5.5=90 | | 1.3c+5.2=6.4 | | G(-2)=3x-1 | | 2p-5p=3 | | 4+2x-3x=-2 | | 130+20x=36x | | 65+10x=18x | | 130+20x=18x | | 4x^2+11x-6=x^2-2 | | 114=5-(2-x) | | Z=6-3x | | 130=18x | | 3-3a-4=-5 |